双向递归神经网络

本文介绍了如何使用pytorch实现双向递归神经网络

步骤

导入必要的包

1
2
3
4
import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

设备配置和超参数设置

1
2
3
4
5
6
7
8
9
10
11
12
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

MNIST数据集准备

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
train=True,
transform=transforms.ToTensor(),
download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
train=False,
transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

网络搭建,一个双向递归神经网络

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes) # 2 for bidirection

def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)

# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)

# Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out

model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)

定义loss和优化器

1
2
3
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

训练模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)

# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)

# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

测试模型

1
2
3
4
5
6
7
8
9
10
11
12
13
# Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

保存模型的checkpoint

1
2
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')

原文链接:https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/bidirectional_recurrent_neural_network/main.py

Contents
|